Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37513837

RESUMO

Mucoadhesive nanosized crystalline aggregates (NCs) can be delivered by the gastrointestinal, nasal, or pulmonary route to improve retention at particular sites. Itopride hydrochloride (ITH) was selected as a drug candidate due to its absorption from the upper gastrointestinal tract. For drug localization and target-specific actions, mucoadhesive polymers are essential. The current work aimed to use second-generation mucoadhesive polymers (i.e., thiolated polymers) to enhance mucoadhesive characteristics. An ITH-NC formulation was enhanced using response surface methodology. Concentrations of Tween 80 and Polyvinyl pyrrolidone (PVP K-30) were selected as independent variables that could optimize the formulation to obtain the desired entrapment efficacy and particle size/diameter. It was found that a formulation prepared using Tween 80 at a concentration of 2.55% and PVP K-30 at 2% could accomplish the goals for which an optimized formulation was needed. Either xanthan gum (XG) or thiolated xanthan gum (TXG) was added to the optimized formulation to determine how they affected the mucoadhesive properties of the formulation. Studies demonstrated that there was an initial burst release of ITH from the ITH/NC/XG and ITH/NC/TXG in the early hours and then a steady release for 24 h. As anticipated, the TXG formulation had a better mucin interaction, and this was needed to ensure that the drug was distributed to tissues that produce mucus. Finally, at the measured concentrations, the ITH/NC showed minimal cytotoxicity against lung cells, indicating that it may have potential for additional in vivo research. The enhanced bioavailability and mean residence time of the designed mucoadhesive NC formulations were confirmed by pharmacokinetic studies.

2.
Polymers (Basel) ; 14(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501579

RESUMO

In oral administration systems, mucoadhesive polymers are crucial for drug localization and target-specific activities. The current work focuses on the application of thiolated xanthan gum (TXG) to develop and characterize a novel mucoadhesive nanocrystal (NC) system of simvastatin (SIM). Preparation of SIM-NC was optimized using response surface methodology (RSM) coupled with statistical applications. The concentration of Pluronic F-127 and vacuum pressure were optimized by central composite design. Based on this desirable approach, the prerequisites of the optimum formulation can be achieved by a formulation having 92.568 mg of F-127 and 77.85 mbar vacuum pressure to result in EE of 88.8747% and PS of 0.137.835 nm. An optimized formulation was prepared with the above conditions along with xanthan gum (XG) and TXG and various parameters were evaluated. A formulation containing TXG showed 98.25% of SIM at the end of 96 h. Regarding the mucoadhesion potential evaluated by measuring zeta potential, TXG-SIM-NC shoed the maximum zeta potential of 16,455.8 ± 869 mV at the end of 6 h. The cell viability percentage of TXG-SIM-NC (52.54 ± 3.4% with concentration of 50 µg/mL) was less than the plain SIM, with XG-SIM-NC showing the highest cytotoxicity on HSC-3 cells. In vivo pharmacokinetic studies confirm the enhanced bioavailability of formulated mucoadhesive systems of SIM-NC, with TXG-SIM-NC exhibiting the maximum.

3.
J Pharm Sci ; 111(5): 1451-1462, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34678275

RESUMO

The purpose of the present study was to prepare Orodispersible films (ODFs) loaded with ketoprofen nanoparticles (KT-NP). The Box-Behnken design was constructed in developing and optimizing the KTF-NP-ODFs. The effect of independent variables: Soluplus® concentration (X1, stabilizer), Tween 80 concentration (X2, surfactant), and KTF concentration (X3, drug) were studied on the dependent variables: particle size (PS, Y1), zeta potential (ZP, Y2), and the polydispersity index (PDI, Y3) of the NPs, as well as on the tensile strength (TS, Y4) and permeability coefficient (PC, Y5) of the KTF-NP-ODFs. Hydroxypropyl methylcellulose (HPMC E15) and polyethylene glycol (PEG 400) were used as the film former polymer and plasticizer, respectively, and their concentrations were kept constant for all formulations. KTF-NPs were prepared by antisolvent precipitation technology. This was followed by the addition of HPMC E15 and PEG 400 to prepare the ODFs using the solvent-casting method. The PS, PDI, and ZP for all the formulations were found in the range of 94 nm to 350 nm, 0.09 to 0.438, and -21.83 mV to -8.03 mV, respectively. The TS and PC of the prepared KTF-NP-ODFs were found between 1.21 MPa to 3.93 MPa and 3.12 × 10-4 cm/h to 34.23 × 10-4 cm/h, respectively. The amorphous nature of the KTF-NP in the ODFs was confirmed by the absence of characteristic crystalline peaks and endothermic events of KTF in X-ray diffraction (XRD) and modulated differential scanning calorimetry (mDSC), respectively. The optimized formulation showed Ì´ 4 times higher permeability as compared to the pure KTF. In addition, the dissolution of pure KTF and the optimized KTF-NP-ODF in pH 1.2 at the end of 60 min was found to be Ì´ 30% and Ì´ 95%, respectively. Conclusively, KTF-NP-ODFs can be a promising drug delivery system to counter the issues related to dysphagia and bypass the common side effects, such as the gastric irritation associated with NSAIDs like KTF.


Assuntos
Cetoprofeno , Nanopartículas , Sistemas de Liberação de Medicamentos , Excipientes/química , Nanopartículas/química , Tamanho da Partícula , Solubilidade
4.
Int J Pharm ; 569: 118548, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31374240

RESUMO

The present study demonstrated the prediction of predominant root causes of capping behavior as a function of the powder rheological and the mechanical behavior of Acetaminophen (APAP) and Ibuprofen (IBU). The authors analyzed powder rheological properties for powder blend permeability, pressure drop, and cohesion. The measured deformation properties were compact porosity, internal air pressure, Brinell hardness, and tensile strength. The data were evaluated qualitatively and quantitatively using multivariate techniques, such as principal component analysis (PCA) and principal component regression (PCR) models, respectively, to identify the effect of powder air entrapment efficiency and mechanical behavior on the tablet capping score. The PCA model indicated that pressure drop, cohesion, API amount, and compression pressure correlated positively, whereas permeability, porosity, internal air pressure, Brinell hardness, and tensile strength correlated negatively to the capping potential. APAP and IBU also showed two independent mechanisms as a function of their amount on the capping score at all compression pressures. APAP and IBU followed an exponential and linear relationship, respectively. Furthermore, the dominant powder rheological and deformation behavior affecting the capping score of each material was identified and quantified using two separate PCR models. These models showed that APAP capping was predominantly dependent on its powder properties, while that of IBU was predominantly based on its deformation properties. In conclusion, APAP and IBU compacts capping had respective air induced and deformation induced capping behavior. The proposed approach can aid in understanding the underlying mechanisms of capping and developing an effective, optimized strategy to ensure tablet quality.


Assuntos
Acetaminofen/química , Ibuprofeno/química , Pressão do Ar , Análise Multivariada , Porosidade , Pós , Análise de Componente Principal , Reologia , Comprimidos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...